Logo

Mathematical Tools of Quantum Mechanics

Small book cover: Mathematical Tools of Quantum Mechanics

Mathematical Tools of Quantum Mechanics
by

Publisher: Sissa, Trieste

Description:
The author gives a presentation which, while preserving mathematical rigor, insists on the conceptual aspects and on the unity of Quantum Mechanics. The theory which is presented here is Quantum Mechanics as formulated in its essential parts on one hand by de Broglie and Schroedinger and on the other by Born, Heisenberg and Jordan with important contributions by Dirac and Pauli.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Mathematical Concepts of Quantum MechanicsMathematical Concepts of Quantum Mechanics
by - University of Toronto
These lectures cover a one term course taken by a mixed group of students specializing either in mathematics or physics. We illustrate an interplay of ideas from various fields of mathematics, such as operator theory, differential equations, etc.
(2021 views)
Book cover: Guide to Mathematical Concepts of Quantum TheoryGuide to Mathematical Concepts of Quantum Theory
by - arXiv
In this text the authors introduce the quantum theory understood as a mathematical model describing quantum experiments. This is a mathematically clear and self-containing explanation of the main concepts of the modern language of quantum theory.
(7366 views)
Book cover: Uncertainty and Exclusion Principles in Quantum MechanicsUncertainty and Exclusion Principles in Quantum Mechanics
by - arXiv.org
These are lecture notes for a master-level course given at KTH, Stockholm, in the spring of 2017, with the primary aim of proving the stability of matter from first principles using modern mathematical methods in many-body quantum mechanics.
(631 views)
Book cover: Geometry of Quantum MechanicsGeometry of Quantum Mechanics
by - Stockholms universitet, Fysikum
These are the lecture notes from a graduate course in the geometry of quantum mechanics. The idea was to introduce the mathematics in its own right, but not to introduce anything that is not directly relevant to the subject.
(8946 views)