Logo

A Basic Introduction to Large Deviations: Theory, Applications, Simulations

Small book cover: A Basic Introduction to Large Deviations: Theory, Applications, Simulations

A Basic Introduction to Large Deviations: Theory, Applications, Simulations
by

Publisher: arXiv
Number of pages: 56

Description:
The theory of large deviations deals with the probabilities of rare events (or fluctuations) that are exponentially small as a function of some parameter, e.g., the number of random components of a system, the time over which a stochastic system is observed, the amplitude of the noise perturbing a dynamical system or the temperature of a chemical reaction.

Home page url

Download or read it online for free here:
Download link
(1.4MB, PDF)

Similar books

Book cover: Statistical Mechanics of Nonequilibrium LiquidsStatistical Mechanics of Nonequilibrium Liquids
by - ANU E Press
The book charts the development and theoretical analysis of molecular dynamics as applied to equilibrium and non-equilibrium systems. It connects molecular dynamics simulation with the mathematical theory to understand non-equilibrium steady states.
(7172 views)
Book cover: Study notes for Statistical PhysicsStudy notes for Statistical Physics
by - Bookboon
This is an academic textbook in three parts, intended for a one-semester course in statistical physics at honours BSc level. Throughout the book, the emphasis is on a clear, concise exposition, with all steps being clearly explained.
(2124 views)
Book cover: Phase Transitions and Collective PhenomenaPhase Transitions and Collective Phenomena
by - University of Cambridge
Contents -- Preface; Chapter 1: Critical Phenomena; Chapter 2: Ginzburg-Landau Theory; Chapter 3: Scaling Theory; Chapter 4: Renormalisation Group; Chapter 5: Topological Phase Transitions; Chapter 6: Functional Methods in Quantum Mechanics.
(2543 views)
Book cover: Lecture Notes on Thermodynamics and Statistical MechanicsLecture Notes on Thermodynamics and Statistical Mechanics
by - University of California, San Diego
Contents: Probability 2. Thermodynamics 3. Ergodicity and the Approach to Equilibrium 4. Statistical Ensembles 5. Noninteracting Quantum Systems 6. Classical Interacting Systems 7. Mean Field Theory of Phase Transitions 8. Nonequilibrium Phenomena.
(5544 views)