Logo

Quantum Transients by A. del Campo, G. Garcia-Calderon, J. G. Muga

Small book cover: Quantum Transients

Quantum Transients
by

Publisher: arXiv
Number of pages: 76

Description:
Quantum transients are temporary features of matter waves before they reach a stationary regime. Transients may arise after the preparation of an unstable initial state or due to a sudden interaction or a change in the boundary conditions. Examples are diffraction in time, buildup processes, decay, trapping, forerunners or pulse formation, as well as other phenomena recently discovered, such as the simultaneous arrival of a wave peak at arbitrarily distant observers.

Home page url

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Decoherence: Basic Concepts and Their InterpretationDecoherence: Basic Concepts and Their Interpretation
by - arXiv
Introduction to the theory of decoherence. Contents: Phenomenon of decoherence: superpositions, superselection rules, decoherence by measurements; Observables as a derivable concept; Measurement problem; Density matrix, coarse graining, and events.
(6514 views)
Book cover: NetWorld!: What People are Really Doing on the InternetNetWorld!: What People are Really Doing on the Internet
by - Prima Communications
The Net is revolutionizing the way millions of people work, learn, fall in love, create art, do business, make friends, and entertain themselves. Rothman explores this new electronic meeting place, as well as the controversy that threatens it ...
(1838 views)
Book cover: Quantum Mechanics - Lecture NotesQuantum Mechanics - Lecture Notes
by - Technion
Contents: Hamilton's Formalism of Classical Physics; State Vectors and Operators; The Position and Momentum Observables; Quantum Dynamics; The Harmonic Oscillator; Angular Momentum; Central Potential; Density Operator; Perturbation Theory; etc.
(6232 views)
Book cover: Quantum mechanics: An intermediate level courseQuantum mechanics: An intermediate level course
by - Lulu.com
Lecture notes for an upper-division quantum mechanics course: fundamental concepts, one-dimensional potentials, central potentials, angular momentum, the hydrogen atom, time-independent perturbation theory, time-dependent perturbation theory, etc.
(11335 views)