**Clifford Algebra, Geometric Algebra, and Applications**

by Douglas Lundholm, Lars Svensson

**Publisher**: arXiv 2009**Number of pages**: 117

**Description**:

These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra.

Download or read it online for free here:

**Download link**

(960KB, PDF)

## Similar books

**Infinite-dimensional Lie Algebras**

by

**Iain Gordon**-

**University of Edinburgh**

Contents: Central extensions; Virasoro algebra; Heisenberg algebra; Enveloping algebras; Hands-on loop and affine algebras; Simple Lie algebras; Kac-Moody Lie algebras; Dynkin diagrams; Forms, Weyl groups and roots; Root spaces; Affine Lie algebras.

(

**7967**views)

**An introduction to Noncommutative Projective Geometry**

by

**D. Rogalski**-

**arXiv**

These lecture notes are an expanded version of the author's lectures at a graduate workshop. The main topics discussed are Artin-Schelter regular algebras, point modules, and the noncommutative projective scheme associated to a graded algebra.

(

**4789**views)

**A Treatise on the Theory of Invariants**

by

**Oliver E. Glenn**-

**Project Gutenberg**

The object of this book is to present in a volume of medium size the fundamental principles and processes and a few of the multitudinous applications of invariant theory, with emphasis upon both the nonsymbolical and the symbolical method.

(

**6827**views)

**Smarandache Loops**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

The purpose of this book entirely lies in the study, introduction and examination of the Smarandache loops. We expect the reader to have a good background in algebra and more specifically a strong foundation in loops and number theory.

(

**6008**views)