**Semi-Riemann Geometry and General Relativity**

by Shlomo Sternberg

2003**Number of pages**: 251

**Description**:

This book represents course notes for a one semester course at the undergraduate level giving an introduction to Riemannian geometry and its principal physical application, Einsteinâ€™s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus, preferably in the language of differential forms.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**A Panoramic View of Riemannian Geometry**

by

**Marcel Berger**-

**Springer**

In this monumental work, Marcel Berger manages to survey large parts of present day Riemannian geometry. The book offers a great opportunity to get a first impression of some part of Riemannian geometry, together with hints for further reading.

(

**6870**views)

**Riemannian Submanifolds: A Survey**

by

**Bang-Yen Chen**-

**arXiv**

Submanifold theory is a very active vast research field which plays an important role in the development of modern differential geometry. In this book, the author provides a broad review of Riemannian submanifolds in differential geometry.

(

**2991**views)

**An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity**

by

**Leonor Godinho, Jose Natario**

Contents: Differentiable Manifolds; Differential Forms; Riemannian Manifolds; Curvature; Geometric Mechanics; Relativity (Galileo Spacetime, Special Relativity, The Cartan Connection, General Relativity, The Schwarzschild Solution).

(

**3937**views)

**Medians and Means in Riemannian Geometry: Existence, Uniqueness and Computation**

by

**M. Arnaudon, F. Barbaresco, L. Yang**-

**arXiv**

This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. The existence and uniqueness results of local medians are given. We propose a subgradient algorithm and prove its convergence.

(

**5573**views)