**Gravitational Waves and Black Holes: an Introduction to General Relativity**

by J.W. van Holten

**Publisher**: arXiv 1997**Number of pages**: 97

**Description**:

In these lectures general relativity is outlined as the classical field theory of gravity, emphasizing physical phenomena rather than mathematical formalism. Dynamical solutions representing traveling waves as well as stationary fields like those of black holes are discussed. Their properties are investigated by studying the geodesic structure of the corresponding space-times, as representing the motion of point-like test particles. The interaction between gravitational, electro-magnetic and scalar fields is also considered.

Download or read it online for free here:

**Download link**

(650KB, PDF)

## Similar books

**General Relativity Without Calculus**

by

**Jose Natario**-

**Springer**

This book was written as a guide for a one week course aimed at exceptional students in their final years of secondary education. The course was intended to provide a quick but nontrivial introduction to Einstein's general theory of relativity.

(

**5155**views)

**Metric Relativity and the Dynamical Bridge: highlights of Riemannian geometry in physics**

by

**Mario Novello, Eduardo Bittencourt**-

**arXiv**

We present an overview of recent developments concerning modifications of the geometry of space-time to describe various physical processes of interactions among classical and quantum configurations. We concentrate in two main lines of research...

(

**1095**views)

**General Covariance and the Foundations of General Relativity**

by

**John D Norton**-

**University of Pittsburgh**

This text reviews the development of Einstein's thought on general covariance (the fundamental physical principle of GTR), its relation to the foundations of general relativity and the evolution of the continuing debate over his viewpoint.

(

**5436**views)

**An Introduction to the Theory of Rotating Relativistic Stars**

by

**Eric Gourgoulhon**-

**arXiv**

These notes introduce the theory of rotating stars in general relativity. The focus is on the theoretical foundations, with a detailed discussion of the spacetime symmetries, the choice of coordinates and the derivation of the equations of structure.

(

**6734**views)