Logo

Introduction to Groups, Invariants and Particles

Small book cover: Introduction to Groups, Invariants and Particles

Introduction to Groups, Invariants and Particles
by

Publisher: Orange Grove Texts Plus
ISBN/ASIN: 1616100427
ISBN-13: 9781616100421
Number of pages: 162

Description:
The book places the subject matter in its historical context with discussions of Galois groups, algebraic invariants, Lie groups and differential equations, presented at a level that is not the standard fare for students majoring in the Physical Sciences. A sound mathematical basis is thereby provided for the study of special unitary groups and their applications to Particle Physics.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Lectures on Algebraic GroupsLectures on Algebraic Groups
by - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(6947 views)
Book cover: Frobenius Splittings and B-ModulesFrobenius Splittings and B-Modules
by - Springer
The course given by the author in 1992 explains the solution by O. Mathieu of some conjectures in the representation theory of arbitrary semisimple algebraic groups. The conjectures concern filtrations of 'standard' representations.
(4594 views)
Book cover: Interval GroupoidsInterval Groupoids
by - arXiv
This book defines new classes of groupoids, like matrix groupoid, polynomial groupoid, interval groupoid, and polynomial groupoid. This book introduces 77 new definitions substantiated and described by 426 examples and 150 theorems.
(5100 views)
Book cover: Smarandache SemigroupsSmarandache Semigroups
by - American Research Press
The Smarandache semigroups exhibit properties of both a group and a semigroup simultaneously. This book assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties for reference.
(5491 views)